
Is math invented or discovered? A leading astrophysicist suggests that the answer to the millennia-old 

question is both 

MOST OF US TAKE IT FOR GRANTED that math works--that scientists can devise formulas to describe 

subatomic events or that engineers can calculate paths for spacecraft. We accept the view, initially 

espoused by Galileo, that mathematics is the language of science and expect that its grammar explains 

experimental results and even predicts novel phenomena. The power of mathematics, though, is 

nothing short of astonishing. Consider, for example, Scottish physicist James Clerk Maxwell's famed 

equations: not only do these four expressions summarize all that was known of electromagnetism in the 

1860s, they also anticipated the existence of radio waves two decades before German physicist Heinrich 

Hertz detected them. Very few languages are as effective, able to articulate volumes' worth of material 

so succinctly and with such precision. Albert Einstein pondered, "How is it possible that mathematics, a 

product of human thought that is independent of experience, fits so excellently the objects of physical 

reality?" 

As a working theoretical astrophysicist, I encounter the seemingly "unreasonable effectiveness of 

mathematics," as Nobel laureate physicist Eugene Wigner called it in 1960, in every step of my job. 

Whether I am struggling to understand which progenitor systems produce the stellar explosions known 

as type Ia supernovae or calculating the fate of Earth when our sun ultimately becomes a red giant, the 

tools I use and the models I develop are mathematical. The uncanny way that math captures the natural 

world has fascinated me throughout my career, and about 10 years ago I resolved to look into the issue 

more deeply. 

At the core of this mystery lies an argument that mathematicians, physicists, philosophers and cognitive 

scientists have had for centuries: Is math an invented set of tools, as Einstein believed? Or does it 

actually exist in some abstract realm, with humans merely discovering its truths? Many great 

mathematicians--including David Hilbert, Georg Cantor and the group known as Nicolas Bourbaki--have 

shared Einstein's view, associated with a school of thought called Formalism. But other illustrious 

thinkers--among them Godfrey Harold Hardy, Roger Penrose and Kurt Gödel--have held the opposite 

view, Platonism. 

This debate about the nature of mathematics rages on today and seems to elude an answer. I believe 

that by asking simply whether mathematics is invented or discovered, we ignore the possibility of a 

more intricate answer: both invention and discovery play a crucial role. I posit that together they 

account for why math works so well. Although eliminating the dichotomy between invention and 

discovery does not fully explain the unreasonable effectiveness of mathematics, the problem is so 

profound that even a partial step toward solving it is progress. 

INVENTION AND DISCOVERY 

MATHEMATICS is unreasonably effective in two distinct ways, one I think of as active and the other as 

passive. Sometimes scientists create methods specifically for quantifying real-world phenomena. For 

example, Isaac Newton formulated calculus for the purpose of capturing motion and change, breaking 

them up into infinitesimally small frame-by-frame sequences. Of course, such active inventions are 



effective; the tools are, after all, made to order. What is surprising, however, is their stupendous 

accuracy in some cases. Take, for instance, quantum electrodynamics, the mathematical theory 

developed to describe how light and matter interact. When scientists use it to calculate the magnetic 

moment of the electron, the theoretical value agrees with the most recent experimental value--

measured at 1.00115965218073 in the appropriate units in 2008--to within a few parts per trillion! 

Even more astonishing, perhaps, mathematicians sometimes develop entire fields of study with no 

application in mind, and yet decades, even centuries, later physicists discover that these very branches 

make sense of their observations. Examples of this kind of passive effectiveness abound. French 

mathematician Évariste Galois, for example, developed group theory in the early 1800s for the sole 

purpose of determining the solvability of polynomial equations. Very broadly, groups are algebraic 

structures made up of sets of objects (say, the integers) united under some operation (for instance, 

addition) that obey specific rules (among them the existence of an identity element such as 0, which, 

when added to any integer, gives back that same integer). In 20th-century physics, this rather abstract 

field turned out to be the most fruitful way of categorizing elementary particles--the building blocks of 

matter. In the 1960s physicists Murray Gell-Mann and Yuval Ne'eman independently showed that a 

specific group, referred to as SU(3), mirrored a behavior of subatomic particles called hadrons--a 

connection that ultimately laid the foundations for the modern theory of how atomic nuclei are held 

together. 

The study of knots offers another beautiful example of passive effectiveness. Mathematical knots are 

similar to everyday knots, except that they have no loose ends. In the 1860s Lord Kelvin hoped to 

describe atoms as knotted tubes of ether. That misguided model failed to connect with reality, but 

mathematicians continued to analyze knots for many decades merely as an esoteric arm of pure 

mathematics. Amazingly, knot theory now provides important insights into string theory and loop 

quantum gravity--our current best attempts at articulating a theory of space-time that reconciles 

quantum mechanics with general relativity. Similarly, English mathematician Hardy's discoveries in 

number theory advanced the field of cryptography, despite Hardy's earlier proclamation that "no one 

has yet discovered any warlike purpose to be served by the theory of numbers." And in 1854 Bernhard 

Riemann described non-Euclidean geometries--curious spaces in which parallel lines converge or 

diverge. More than half a century later Einstein invoked those geometries to build his general theory of 

relativity. 

A pattern emerges: humans invent mathematical concepts by way of abstracting elements from the 

world around them--shapes, lines, sets, groups, and so forth--either for some specific purpose or simply 

for fun. They then go on to discover the connections among those concepts. Because this process of 

inventing and discovering is man-made--unlike the kind of discovery to which the Platonists subscribe--

our mathematics is ultimately based on our perceptions and the mental pictures we can conjure. For 

instance, we possess an innate talent, called subitizing, for instantly recognizing quantity, which 

undoubtedly led to the concept of number. We are very good at perceiving the edges of individual 

objects and at distinguishing between straight and curved lines and between different shapes, such as 

circles and ellipses-abilities that probably led to the development of arithmetic and geometry. So, too, 



the repeated human experience of cause and effect at least partially contributed to the creation of logic 

and, with it, the notion that certain statements imply the validity of others. 

SELECTION AND EVOLUTION 

MICHAEL ATIYAH, one of the greatest mathematicians of the 20th century, has presented an elegant 

thought experiment that reveals just how perception colors which mathematical concepts we embrace--

even ones as seemingly fundamental as numbers. German mathematician Leopold Kronecker famously 

declared, "God created the natural numbers, all else is the work of man." But imagine if the intelligence 

in our world resided not with humankind but rather with a singular, isolated jellyfish, floating deep in 

the Pacific Ocean. Everything in its experience would be continuous, from the flow of the surrounding 

water to its fluctuating temperature and pressure. In such an environment, lacking individual objects or 

indeed anything discrete, would the concept of number arise? If there were nothing to count, would 

numbers exist? 

Like the jellyfish, we adopt mathematical tools that apply to our world--a fact that has undoubtedly 

contributed to the perceived effectiveness of mathematics. Scientists do not choose analytical methods 

arbitrarily but rather on the basis of how well they predict the results of their experiments. When a 

tennis ball machine shoots out balls, you can use the natural numbers 1, 2, 3, and so on, to describe the 

flux of balls. When firefighters use a hose, however, they must invoke other concepts, such as volume or 

weight, to render a meaningful description of the stream. So, too, when distinct subatomic particles 

collide in a particle accelerator, physicists turn to measures such as energy and momentum and not to 

the end number of particles, which would reveal only partial information about how the original 

particles collided because additional particles can be created in the process. 

Over time only the best models survive. Failed models--such as French philosopher René Descartes's 

attempt to describe the motion of the planets by vortices of cosmic matter--die in their infancy. In 

contrast, successful models evolve as new information becomes available. For instance, very accurate 

measurements of the precession of the planet Mercury necessitated an overhaul of Newton's theory of 

gravity in the form of Einstein's general relativity. All successful mathematical concepts have a long shelf 

life: the formula for the surface area of a sphere remains as correct today as it was when Archimedes 

proved it around 250 B.C. As a result, scientists of any era can search through a vast arsenal of 

formalisms to find the most appropriate methods. 

Not only do scientists cherry-pick solutions, they also tend to select problems that are amenable to 

mathematical treatment. There exists, however, a whole host of phenomena for which no accurate 

mathematical predictions are possible, sometimes not even in principle. In economics, for example, 

many variables--the detailed psychology of the masses, to name one--do not easily lend themselves to 

quantitative analysis. The predictive value of any theory relies on the constancy of the underlying 

relations among variables. Our analyses also fail to fully capture systems that develop chaos, in which 

the tiniest change in the initial conditions may produce entirely different end results, prohibiting any 

long-term predictions. Mathematicians have developed statistics and probability to deal with such 

shortcomings, but mathematics itself is limited, as Austrian logician Gödel famously proved. 



SYMMETRY OF NATURE 

THIS CAREFUL SELECTION of problems and solutions only partially accounts for mathematics's success in 

describing the laws of nature. Such laws must exist in the first place! Luckily for mathematicians and 

physicists alike, universal laws appear to govern our cosmos: an atom 12 billion light-years away 

behaves just like an atom on Earth; light in the distant past and light today share the same traits; and 

the same gravitational forces that shaped the universe's initial structures hold sway over present-day 

galaxies. Mathematicians and physicists have invented the concept of symmetry to describe this kind of 

immunity to change. 

The laws of physics seem to display symmetry with respect to space and time: They do not depend on 

where, from which angle, or when we examine them. They are also identical to all observers, 

irrespective of whether these observers are at rest, moving at constant speeds or accelerating. 

Consequently, the same laws explain our results, whether the experiments occur in China, Alabama or 

the Andromeda galaxy--and whether we conduct our experiment today or someone else does a billion 

years from now. If the universe did not possess these symmetries, any attempt to decipher nature's 

grand design--any mathematical model built on our observations--would be doomed because we would 

have to continuously repeat experiments at every point in space and time. 

Even more subtle symmetries, called gauge symmetries, prevail within the laws that describe the 

subatomic world. For instance, because of the fuzziness of the quantum realm, a given particle can be a 

negatively charged electron or an electrically neutral neutrino, or a mixture of both--until we measure 

the electric charge that distinguishes between the two. As it turns out. the laws of nature take the same 

form when we interchange electrons for neutrinos or any mix of the two. The same holds true for 

interchanges of other fundamental particles. Without such gauge symmetries, it would have been very 

difficult to provide a theory of the fundamental workings of the cosmos. We would be similarly stuck 

without locality--the fact that objects in our universe are influenced directly only by their immediate 

surroundings rather than by distant phenomena. Thanks to locality, we can attempt to assemble a 

mathematical model of the universe much as we might put together a jigsaw puzzle, starting with a 

description of the most basic forces among elementary particles and then building on additional pieces 

of knowledge. 

Our current best mathematical attempt at unifying all interactions calls for yet another symmetry, 

known as supersymmetry. In a universe based on supersymmetry, every known particle must have an as 

yet undiscovered partner. If such partners are discovered (for instance, once the Large Hadron Collider 

at CERN near Geneva reaches its full energy), it will be yet another triumph for the effectiveness of 

mathematics. 

I started with two basic, interrelated questions: Is mathematics invented or discovered? And what gives 

mathematics its explanatory and predictive powers? I believe that we know the answer to the first 

question. Mathematics is an intricate fusion of inventions and discoveries. Concepts are generally 

invented, and even though all the correct relations among them existed before their discovery, humans 

still chose which ones to study. The second question turns out to be even more complex. There is no 



doubt that the selection of topics we address mathematically has played an important role in math's 

perceived effectiveness. But mathematics would not work at all were there no universal features to be 

discovered. You may now ask: Why are there universal laws of nature at all? Or equivalently: Why is our 

universe governed by certain symmetries and by locality? I truly do not know the answers, except to 

note that perhaps in a universe without these properties, complexity and life would have never 

emerged, and we would not be here to ask the question. 
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PHOTO (BLACK & WHITE): Fractals, such as this stack of spheres created using 3-D modeling software, 

are one of the mathematical structures that were invented for abstract reasons yet manage to capture 

reality. 
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IN BRIEF  

The deepest mysteries are often the things we take for granted. Most people never think twice about 

the fact that scientists use mathematics to describe and explain the world. But why should that be the 

case? 

Math concepts developed for purely abstract reasons turn out to explain real phenomena. Their utility, 

as physicist Eugene Wigner once wrote, "is a wonderful gift which we neither understand nor deserve.'' 

Part of the puzzle is the question of whether mathematics is an invention (a creation of the human 

mind) or a discovery (something that exists independently of us). The author suggests it is both. 
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